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MULTIPLE-RELAXATION-TIMELATTICE BOLTZMANN MODELSIN 3D

DOMINIQUED'HUMII);RES*,IRINAGINZBURGl, MANFREDKRAFCZYK;,PIERRELALLEIvIAND§,AND
LI-SHILUO¶

Abstract. Thisarticleprovidesa conciseexpositionofthemultiple-relaxation-timelatticeBoltzmann
equation,withexamplesoffifteen-velocityandnineteen-velocitymodelsin threedimensions.Simulationofa
diagonallylid-drivencavityflowin threedimensionsatRe= 500and2000isperformed.Theresultsclearly
demonstratethesuperiornumericalstabilityofthemultiple-relaxation-timelatticeBoltzmannequationover
thepopularlatticeBhatnagar-Gross-Krookequation.

Key words,multiple-relaxation-timeLBEin 3D,D3Q15andD3Q19models,3Ddiagonallid driven
cavityflow

Subjectclassification.FluidMechanics

1. Introduction. TherelaxationlatticeBoltzmannequation(RLBE)wasintroducedbyHigueraand
Jim6nez[20]toovercomesomedrawbacksoflatticegasautomata(LGA)suchaslargestatisticalnoise,limited
rangeofphysicalparameters,non-Galileaninvariance,andimplementationdifficultyin threedimensions.In
theoriginalRLBEtheequilibriaandtherelaxationmatrixwerederivedfromtheunderlyingLGAmodels.It
wassoonrealizedthattheconnectionto theLGAmodelcouldbeabandonedandtheequilibriaandcollision
matricescouldbeconstructedindependentlyto bettersuitnumerics[21].

ThesimplestlatticeBoltzmannequation(LBE)isthelatticeBhatnagar-Gross-Krook(BGK)equation,
basedonasingle-relaxation-timeapproximation[1].Duetoitsextremesimplicity,thelatticeBGK(LBGK)
equation[29,4]hasbecomethemostpopularlatticeBoltzmannmodelinspiteofitswellknowndeficiencies.

Themultiple-relaxation-time(MRT)latticeBoltzmannequationwasalsodevelopedatthesametime[7].
TheMRTlatticeBoltzmannequation(alsoreferredtoasthegeneralizedlatticeBoltzmannequation(GLBE)
orthemomentmethod)overcomessomeobviousdefectsoftheLBGKmodel,suchasfixedPrandtlnumber
(Pr= 1fortheBGKmodel)andfixedratiobetweenthekinematicandbulkviscosities.TheMRTlattice
Boltzmannequationhasbeenpersistentlypursued,andmuchprogresshasbeenmade.Successesinclude:
formulationofoptimalboundaryconditions[10,22],interfaceconditionsinnmlti-phaseflows[11]andfree
surfaces[12],thermal[26]andviscoelasticmodels[13,14],modelswith reducedlatticesymmetries[8,2],
andimprovementofnumericalstability[23].It shouldbestressedthatmostoftheaboveresultscannotbe
obtainedwiththeLBGKmodels.Applyingoptimizationtechniquesincoding,thecomputationalefficiency
oftheRLBEmethod[7]canbefairlycloseto thatof theLBGKmethodformostpracticalapplications
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(RLBE schemes could be ca. 15% slower than their LBGK counterparts in terms of the number of sites

updated per second). Recently it was shown that the multiple-relaxation-time LBE models are much more

stable than their LBGK counterparts (Lallemand & Luo 2000), because the different relaxation times can

be individually tuned to achieve 'optimal' stability.

In this paper we intend to bring attention to the multiple-relaxation-time LBE by demonstrating its

superior stability to LBGK models. This paper is organized as follows. Section 2 briefly outlines the basic

theory of the multiple-relaxation-time LBE. Section 3 provides as a 'template' example: a fifteen-velocity

RLBE model in three dimensions (D3Q15 model). Section 4 gives some results for a three-dimensional

cavity flow simulated by using both RLBE and LBGK methods. Finally, section 5 concludes the paper. The

appendix briefly describes the nineteen-velocity model in three dimensions (D3Q19 model).

2. Multiple-relaxation-time lattice Boltzmann equation. Although it can be shown that the

lattice Boltzmann equation is a finite difference form of the linearized continuous Boltzmann equation [17, 18],

we present RLBE as a self-contained mathematical object representing a dynamical system with a finite

number of moments in discrete space and time.

The general RLBE model has three components. The first component is discrete phase space defined

by a regular lattice in D dimensions together with a set of judiciously chosen discrete velocities {e_lc_ =

0, 1, ..., N} connecting each lattice site to some of its neighbours. The fundamental object in the theory is

the set of velocity distribution functions {f_la = 0, 1, ..., N} defined on each node ri of the lattice. The

second component includes a collision matrix S and (N + 1) equilibrium distribution functions {f_(en)lc_ =

0, 1, ..., N}. The equilibrium distribution functions are functions of the local conserved quantities. The

third component is the evolution equation in discrete time t,_ = nSt, n = O, 1, ...,

If(ri + ec_dt, t + at)) - If(ri, t)) -----S [ If(ri, t)) - If(eq)(ri, t)) ] . (2.1)

In the above equation we have used the following notations for column vectors in (N + 1)-dimensional space

Y = RN+ 1 '

If(ri, t)) - (fo(ri, t), fl(ri, t), ..., fN(ri, t)) T,

If(eq)(ri, t)) - (f_eq)(ri, t), f_q)(ri, t),.. "(_q)'• , ]iv tri, t)) 1, and

If(ri + e_St, t + at)} - (fo(ri, t + at), ..., fN(ri + eNSt, t + at)) T,

where T denotes the transpose operator and we always assume that e0 - 0. From here on the Dirac

notations of bra ('1 and ket I'} vectors are used to denote respectively the row and colunm vectors. Note

that equation (2.1) is written in such a way that its right- and left-hand-sides represent the two elementary

steps in the evolution of the lattice Boltzlnann equation: advection and collision. The advection process is

naturally executed in velocity space V, fct('Pi, t) being simply shifted in space according to the velocity e_ to

f_ (ri + e_dt, t + at). The collision process is naturally accomplished in the space spanned by the eigenvectors

of the collision matrix, the corresponding eigenvalues being the inverse of their relaxation time towards their

equilibria. The (N + 1) eigenvalues of S are all between 0 and 2 so as to maintain linear stability and the

separation of scales, which means that the relaxation times of non-conserved quantities are much faster than

the hydrodynamic time scales. The LBGK models are special cases in which the (N + 1) relaxation times

are all equal, and the collision matrix S = col, where I is the identity matrix, co = 1/T, and r (> 1/2) is the

single relaxation time of the model.

To simulate athermal fluids, a necessary criterion is that the discrete velocity set must be sufficient to

represent a scalar (mass density p), a vector (momentum j), another scalar (pressure P), and a symmetric



tracelesssecondranktensor(viscousstresstensor o-ij ). More generally, the velocity set must possess sufficient

symmetries for the hydrodynamic equations to hold: the conserved quantities and their fluxes must transform

properly so that they can approximate their continuous counterparts in an appropriate limit. Finally the

local conserved quantities must be the mass density p and the momentum j for athermal fluids.

Given a chosen set of discrete velocities {e_la = 0, 1, ..., N} and corresponding distribution functions

{f_,la = 0, 1, ..., N}, an equal number of moments {runiC/= 0, 1, ..., N} of the distribution functions f_

can be obtained as

m_ - (_]f) = (fld)_), (f] = (fo, fl, ..., fN), (2.2)

where {10_)113 = 0, 1, ..., N} is an orthogonal dual basis set constructed by the Gram-Sehmidt orthogonal-

ization procedure (e.g. Bouzidi et al. 2001a) from polynomials of the column vectors lex_) in space V. Vector

Icx_) is built from the components of the e_'s, i.e. Icx_) - (e0_, taxi,..., CNxl) T, for i E {1, 2,..., D} in

D dimensions (e.g., {Ic,}, Icy}, Ic_}} in three dimensions).

The set {l_a)} is analogous to the Hermite tensor polynomials in continuous velocity space [15, 16].

It should be stressed that the orthogonal functions defined on a finite set of discrete velocities {e_} has

some degeneracies which do not exist in the Hermite tensor polynomials in continuous space. Obviously,

the moments are simply linear combinations of the f_'s, therefore velocity space V, spanned by If) -

(f0, I1, ..-, fN) T, and the moment space NI, spanned by Ira) - (too, ml,..., rrtN) T, are related by a

linear mapping M: Ira) = MIf } and I/) = M-11m) • The transformation matrix M would be an orthogonal

transformation if the basis vectors {102}} are normalized.

If the matrix S is chosen such that the {1_)} are its eigenvectors, the linear relaxation of the kinetic

modes in moment space NI naturally accomplishes the collision process. Then the evolution equation (2.1)

of the multiple-relaxation-time lattice Boltzmann equation becomes [7, 23]:

If(ri + ejt, t + St)) - If(ri, t)) = -M-iS [ Im(ri, t)} - Im(eq)(ri, t)) ], (2.3)

where the collision matrix g = M-S. M-_ is diagonah g - diag(80, 8_, ... , 8N), and m(_eq) is the equilibrium

value of the moment m_. The (N + 1) moments can be separated into two groups: the 'hydrodynamic'

(conserved) moments and the 'kinetic' (non-conserved) moments. The first group consists of the moments

locally conserved in the collision process, so that in general m(f q) = m_. The second group consists of the

moments not conserved in the collision process so that rrt(eq) _ rrt/3. The equilibria {rrt (eq)} are functions

of the conserved moments and are invariant under the symmetry group of the underlying lattice. For

models designed to simulate athermal fluids, the only hydrodynamic moments are mass density p (a scalar)

and momentum j (a vector): energy is not a conserved quantity for athermal fluids. Equilibrium values of

kinetic moments are functions of p and Iljll 2 for scalars, and j times some functions of p and Iljll 2 (eventually

a constant) for vectors, and so on, as discussed in §3.

From the above definition of the conserved and non-conserved moments, Eq. (2.3) can be rewritten as

t) - t))]1 9), (2.4)If(ri + e_St, t + (it)) - If(ri, t)} = - _ (O_) [(m_(ri,
flEB( K )

where we have used the fact that (M. MT) is a diagonal matrix with diagonal elements (¢_;31_b2).It is obvious

that the actual values of the 8,_'s for conserved moments are irrelevant, because m(9¢q)(vi, t) = mg(ri, t) for

/_ C B (II) by definition, but they are set to zero in general in what follows. Note that this point is purely

academic in the present context, but is very important when including body forces, as shown by Ginzbourg

and Adler [10].



TheRLBEformulationhastwoimportantconsequences.First,onehasthemaximumnumberofad-
justablerelaxationtittles,onefor eachclassof kineticmodesinvariantunderthesymmetrygroupof the
underlyinglattice.Second,onehasmaximumfreedomin theconstructionoftheequilibriumfunctionsof
thenon-conservedmoments.Oneimmediateresultof usingtheRLBEinsteadof theLBGKmodelis a
significantimprovementinnumericalstability[23].It shouldbeemphasizedthattheaboveproceduresare
generalandareindependentofthenumberofdiscretevelocitiesandthenumberofspacedimensions.

3. Multiple-relaxation-timeD3Q15model.Eachpointonaunitcubiclatticespacehassixnearest
neighbours,(+1,0,0),(0,+1, 0), and (0, 0, +1), twelve next nearest neighbours, (+1, --1, 0), (+1, 0, +1),

and (0, +1, +1), and eight third nearest neighbours, (+1, +1, +1). Elementary discrete velocity sets for

lattice Boltzmann models in three dimensions are constructed from the set of twenty-six vectors pointing

from the origin to the above neighbours and the zero vector (0, 0, 0). The twenty-seven velocities are usually

grouped into four subsets labelled by their squared modulus, 0, 1, 2, and 3. We also use the notation DdQq

for the q-velocity model in &dimensional space in what follows [29]. The D3Q15 model uses the velocity

subsets 0, 1, and 3 and is described here as an example. The D3Q19 model uses the subsets 0, 1, and 2 and

is described in the appendix. The D3Q13 model introduced by d'Humihres ct al. [8] only uses the subsets 0

and 2.

The fifteen discrete velocities in the D3Q15 model are

(0,0,0), _=0,
eo_ = (--1, O, 0), (0, 4-1, 0), (0, O, 4-1), oz = 1, 2, ..., 6, (3.1)

(4-1, 4-1, 4-1), a = 7, 8, ..., 14.

The components of the corresponding fifteen orthogonal basis vectors 1¢,_)_ are given by:

I¢0>_= Ile_ll°, ]

I¢1}_= Ile_ll2 - 2, / (3.23)1¢2)_ = ½(1511e_ll4 - 5511e_1124- 32),

I¢a)_ = e_y, / (3.2b)ICr}_= _,

1¢4}o_= ½(511e_ll_ - 13)e_x, ]

1¢6>_= _(_lle_ll_ - 13)_,, / (3.2c)ICs>_= ½(_lle_ll_ - 13>_,

1¢9>_----3_x -I1_112, _ (3.2d)
-- (_o_z J

1¢s2)o_ = e_yeo_, / (3.2e)

1¢s4)_ -- e_,c_ve_, (3.20

2 _2 _1/2where a C {0, 1,... , 14}, I1_11= (_ + _y + _J and I1_011° = 1. The orthogonal basis set {1¢9}}
is obtained by orthogonalizing the polynomials of the column vectors le_) by the standard Gram-Schmidt

procedure @.g. [2])). The corresponding fifteen moments {m_]/3 = 0, 1, ..., 14} are: the mass density

(too = p), the part of the kinetic energy independent of the density (m_ = c), the part of the kinetic energy



squareindependentofthedensityandkineticenergy(m2= e = e2), the momentum (ma,5,r = J*,v,_), the

energy flux independent of the mass flux (m4,6,8 = qx,u,_), the symmetric traceless viscous stress tensor

(m9 = 3p._, mso = Pww = Pyy -P_, with P_x +Pyy +P_ = 0, rrt11,12,13 = Pxy,v_,_), and an antisymmetric

third-order moment (/D,14 = m.v_), corresponding to the following order:

Im} = (p, c, e, Jx, qx, Jr, qv, J_, q:, 3pxx, p ..... P,v, Pv:_, P_, m,w) s"

The collision matrix g in moment space l_ is the diagonal matrix

g = diag(0, ss, s2, O, 84, O, 84, O, 84, 89, s9, sis, sss, 811,814), (3.3)

zeros corresponding to conserved moments in the

1

-2

16

0

0

0

0

M= 0

0

0

0

0

0

0

0

Note that the row vectors

order

1 1 1 1 1 1 1 1

-1 -1 -1 -1 -1 -1 1 1

-4 -4 -4 -4 -4 -4 1 1 1

1 -1 0 0 0 0 1 -1 1

-4 4 0 0 0 0 1 -1 1

0 0 1 -1 0 0 1 1 -1

0 0 -4 4 0 0 1 1 -1

0 0 0 0 1 -1 1 1 1

0 0 0 0 -4 4 1 1 1

2 2 -1 -1 -1 -1 0 0 0

0 0 1 1 -1 -1 0 0 0

0 0 0 0 0 0 1 -1 -1

0 0 0 0 0 0 1 1 -1

0 0 0 0 0 0 1 -1 1

0 0 0 0 0 0 1 -1 -1

chosen. And the matrix M is then given by

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

-1 1 -1 1 -1

-1 1 -1 1 -1

-1 1 1 -1 -1

-1 1 1 -1 -1

1 -1 -1 -1 -1

1 -1 -1 -1 -1

0 0 0 0 0

0 0 0 0 0

1 1 -1 -1 1

-1 -1 -1 1 1

-1 -1 1 -1 1

1 -1 1 1 -1

(3.4)

of M, {(¢_1}, are orthogonal to each other but they are not normalized, i.e.

lj 1 2
e(eq) = _p + .j = _p + _oo(J_ + .2_0 J_ + y_)' (3.5a)

_7(eq) = --p, (3.5b)

q(en) 7. q_eq) _ 7. q!eq) 7.= -gax, g3_, = -g3_, (3.5c)

r,(eq) 1 [2j_ - (jr2 + j_)], p(gq) = 1
_xx = 3p_ P0 [j_ j_] (3.5d)

1 1 z p_O 1
,_yrCeq)= -- jxjy,po *'Y_r_(eq)= _ojyj. ' = -- J*J_ 'Po (3.5e)

m (_q) = 0. (3.5f)

of p(eq) = p and j(eq) = j up to second-order are given by

<¢_1¢/_>= II0_11 11¢911 6_9. Note also that, with different ordering and normMization, the basis vectors

{lCk)} given by Ginzburg [9] are the same as the ones given here, except I¢1) and 162) which are replaced by

an orthogonal linear combination. This would make a difference only when 81 ¢ s2. The 4th, 6th, and 8th

row vectors of M (corresponding to j_, jr, and j_, respectively) uniquely define the ordering (or labelling)

of the velocity set {e_} in subscript c_.

With c_ = 1/3 (c, is the sound speed) and s9 = SSl, the equilibria of the kinetic moments as functions



Theconstantsaredefinedasfollows.TheconstantP0 is the mean density in the system and is usually

set to be unity in simulations. The approximation of 1/p ,,_ l/p0 is used in equations (3.5a), (3.5d), and

(3.5e) to reduce compressibility effects in the model (He & Luo 1997c). If the usual compressible Navier-

Stokes equations are required, one only has to replace P0 by p. Equation (3.5b) has the general form

((eq) = We p _}_wejj " J/Po, where w_ and w_j are free parameters which do not have much effect on the

asymptotic Navier-Stokes equation simulated by the model. In this model, we set w_ = -1 and w_j = 0; to

recover the LBGK model, one must set w_ = 1 and w_j = -5.

The above equilibrium functions are obtained by optimizing the isotropy and Galilean invariance of the

model. The details are described in [23]. The kinematic viscosity _ and the bulk viscosity _ of the model are

1(1 _) 1( 1 1) (3.6a)"=g - =g sT1 5'
(5 - 9c_') 2(1

We emphasize that the above formulae are obtained under the conditions that s9 = Sll and q(eq) of equa-

tion (3.5c), which are the results of the optimization, and the mean fluid velocity V = 0. Corrections to

these transport coefficients for finite k and non-zero mean velocity V can be calculated from the solution of

the linearized dispersion equation of the system, which is equivalent to the standard von Neumann stability

analysis [23].

Some properties of the lattice Boltzmann equation are dictated by the symmetries of the discrete velocity

set and the simplicity of the dynamics on the lattice. One consequence is the existence of spurious invariants

that may lead to some undesirable artifacts in simulations, especially near boundaries. One such invariant is

the staggered invariant in LGA and LBE models [30]. The D3Q15 model has also another special invariant

not found in most LBE models: the parity )_(ri) of a vector ri = (xi, y_, z_) defined on a three-dimensional

cubic lattice by

X(ri) = (xi+Yi+Zi) (mod2), forri EZ 3. (3.7)

For the DaQ15 model, if X(ri) is 0 (ri E _3), then X(ri q- ea) is 1 (ri C Zao) for ec_ 7_ 0, and vice versa.

This means that the system has two decoupled sub-lattices (Z_ and _2) for momentum, and these two sub-

lattices can be coupled through boundary conditions. Consequently the system has a chequerboard (parity)

invariance and one should be aware of this fact when using the DaQ15 models, especially when short-wave-

length oscillations are observed in simulations. The oscillations due to the checkerboard invariance often

causes numerical instability in simulations. In contrast, the D3Q19 model with velocities of parities 0 and 1

does not have this checkerboard invariance.

4. Simulations. In order to demonstrate the enhanced stability of the RLBE approach, we simulated

a diagonally lid-driven cavity flow [28] with a flow configuration shown in figure 1. The mesh is uniform and

of size 523. The boundary condition (BC) at the top plane (at y = 1) is UBc = -(v/2, 0, v/2)/20, so that

OBc = IIUBcll = 0.1 in lattice units. The other five planes were subject to no-slip boundary conditions.

The relaxation parameters used in the RLBE simulations are P0 = 1, ss = 1.6, s2 = 1.2, s4 = 1.6, and

814 = 1.2. The values of the relaxation parameters (s_) and the adjustable parameters in e (eq) (*ue and w_j)

have been obtained to attain optimal numerical stability but can only be regarded as 'sub-optimal' values

which are the result of a compromise between the expected range for the Reynolds number and the effort

required to find the optimal values by searching a large parameter space through lirzear analysis. These



PIG.1.Diagonally driven cavity flow

parameters are not adjusted to the actual Reynolds number in each simulation, but are kept constant once

chosen. The relaxation parameters s9 = sss are determined by the viscosity from equation (a.6a). The

accuracy of the simulation is also enhanced by using, instead of the variable p, its fluctuations _p = p - P0.

The boundary conditions on the top plane are obtained in velocity space by assigning {f_} to [22]

eo_ • UBC
f_ = w_po 2 ' (4.1)

c8

where w_ = 1/9 for a C {1,..., 6} and w_ = 1/72 for a C {7,..., 14}. It should be stressed that this

particular implementation of a sliding boundary imposes a constant pressure P0 = c_p0 at the boundary,

which is incorrect; and the momentum transfer in the direction perpendicular to the moving lid is significantly

weakened. The correct boundary conditions consistent with the bounce-back boundary conditions should be

[24, 25, 3]:

ec_ " UBC ea " UBC
f_ = f_ + 2w_po _ -- f_ - 2w_po _, (4.2)

Cs Cs

where f_ is the distribution function of e_ - -e_. Nevertheless, the implementation prescribed by equation

(4.1) does help to enhance the stability of the D3Q15 model. The 'node' bounce-back boundary conditions

are applied to the rest five walls for no-slip boundary conditions [6]. The 'node' bounce-back boundary

conditions differ from the 'link' bounce-back boundary conditions by a one-step delay in time but otherwise

they are the same. This one-time-step delay seems to effectively reduce oscillations caused by the parity

invariance and thus enhances the numerical stability [5].

As the effective width of the system is approximately 50 lattice units, the Reynolds number Re =

50UBc/u was set by varying the viscosity u. We computed the lower bounds of the viscosity for this

particular flow by using the RLBE and LBGK schemes. The lower bounds are 0.6 - 10 -a for RLBE scheme

and 2.5-10 -a for LBGK scheme with the identical discretization, initial and boundary conditions. Viscosities

smaller than these bounds would lead to numerical instability in the simulation. Hence for our test problem

with the same mesh size, the maximum Reynolds number attainable by using the RLBE scheme is about

four-times that attainable using the LBGK scheme.

For the Povitsky cavity flow [28] at a low Reynolds number Re = 500 (viscosity u = 0.01), the pressure

field computed by the LBGK scheme shows severe oscillations throughout the entire computational domain,

even in locations far away from the corner singularities, in contrast to the much smoother pressure field

obtained by using the RLBE scheme, as depicted in figure 2.

When the Reynolds number is increased to 2000, the solution obtained by using the RLBE scheme

agrees reasonably well with that obtained by using the commercial software FLUENT with a non-uniform

683 mesh [28], as shown in figure 3, even though the RLBE grid resolution is much coarser. At a relatively
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FIG. 2. Cavity flow Re -- 500 pressure contours at z -- 0.5: l) RLBE, r) LBGK

high grid Reynolds number Re* = U/v = 40, the pressure field still bears useful information, at least at

some distance from the top corner singularities, as shown in figure 4. In contrast, the LBGK simulation

at Re = 2000 did not converge due to severe oscillations. With further increase of the Reynolds number

to 4000 (u = 0.00125), the flow field becomes unsteady and complex three dimensional vortex shedding are

observed. Detailed analysis of the flow will be published elsewhere.

F:o. 3. Cavity flow Re --2000 stream lines at y --0.5: l) RLBE 523 uniform grids, r) FLUENT 101 a non-uni]brm grids.

In the simulations, suitable coding techniques should be applied to optimize the computational efficiency

of the code. First and foremost, one should not use matrix calculations in the transformations between space

V and space Ig]_,instead, the transformations should be carried out explicitly using the formulae mapping If}

to Irn} and vice versa (equations (2.2) and (2.4)). Secondly, the equilibria must be computed in moment space

IV_and not in velocity space V: this is the reason why we do not provide the equilibrium distribution functions

f(eq). Thirdly, all the common sub-expressions should be computed only" once. This can be achieved either

by explicitly computing these sub-expressions as separate variables or by carefully putting them between



parenthesesandtrustingmoderncompilersto dothemselvesthesub-expressionreduction.Variouscompiler
optimizationoptionscaneasilyaccomplishthis.FinallytheuseofP0 = 1 instead of p avoids the need of a

division in the calculations of the equilibria, and the use of 6p instead of p to increase numerical accuracy.
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FIG. 4. Cavity flow Re -- 2000 pressure contours at z -- 0.5, RLBE 523 uniform grids

By following these basic practices based on common sense, the number of operations required for the sim-

ulation of the multiple-relaxation-time D3Q15 model can be reduced to less than 120 additions/subtractions

and 40 multiplications per time step on a grid point, as opposed to 80 additions/subtractions and 40 mul-

tiplications for the LBGK scheme with the same optimization effort. (The purpose of this counting is not

to find the exact lower bounds, but only to have an estimate.) W_ would also like to stress that on modern

computers the computational performance of lattice Boltzmann schemes is mostly limited by the available

memory bandwidth and that rather soon the cost of local floating-point operations will be negligible. For

instance, combining the collision and propagation steps into one loop would reduce about 1/3 of the time,

because use of two loops doubles the memory access time. (However, this combination of loops is difiqcult to

implement on vector machines.) With the optimization except the combination of collision and propagation

together, the number of sites updated per second of the RLBE D3Q15 scheme for our test carried out on one

node (8 processors) of a Hitachi SR-8000 parallel vector machine is about 1.76.107 as opposed to 2.06 - 107

for the LBGK D3Q15 scheme: the RLBE scheme is about 17% slower than the LBGK counterpart. The

achieved FLOPS rate is 3.18 GFLOPS for the RLBE scheme versus 2.70 GFLOPS for the LBGK scheme.

However it is important to note that, with the same computational effort and near the limit of numerical

stability, the results obtained by using the RLBE scheme is much more accurate than the results obtained

by using the LBGK scheme which are contaminated by numerical instability.

Free of the parity invariance, the D3Q19 RLBE model (see Appendix) further improves the stability.

We have tested the D3Q19 RLBE model in the Povitsky cavity flow [28]. We used the 'link' bounce-back

boundary conditions for the five walls and the correct boundary condition of equation (4.2) for the moving

lid. With the same resolution of 513, the results obtained by using the D3Q19 RLBE model are much more

accurate than that obtained by using the D3Q15 RLBE model with different boundary conditions. This

confirms the previous observation that the D3Q19 LBGK model is more stable than the D3Q15 LBGK

model [27]. A further comparative study of these two RLBE models is left for future work.

5. Conclusions. In this paper we provide a synopsis of the multiple-relaxation-time LBE in three

dimensions and demonstrate its superior numerical stability and efficiency through the simulation of the



diagonally lid-driven cavity flow in three dimensions. The flow is geometrically simple, steady, and yet

non-trivial. For this flow we estimate that the improvement in stability brought by the RLBE scheme

yields an about four-fold gain in maximum Reynolds number when compared to the LBGK scheme. Of

course, this improvement would be flow and boundary and initial condition dependent. Given that the

computational effort required to solve time-dependent flows in three dimensions is basically proportional to

Re 3, the stability improvement by using the RLBE scheme would reduce the computational effort by at least

one order of magnitude while maintaining the accuracy of the simulations.
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Appendix A. Multiple-relaxation-time D3Q19 model.

The nineteen discrete velocities in D3Q19 models are:

(0,0, 0), ,=0,
e_ = (4-1, o, 0), (0, 4-1, 0), (0, o, 4-1), c_= 1, 2, ..., 6, (A.1)

(4-1, 4-1, 0), (4-1, 0, 4-1), (0, 4-1, 4-1), c_= 7, 8, ..., 18,

and the components of the nineteen orthogonal basis vectors are given by

I¢0)_ = Ile_ll° = 1,

I¢_)_ = 1911e_112- a0,

]e_2)_ = (2111e_114 - 5311e_112+ 24)/2,

]e_4)_ ----(511e_ll_ - 9)c_x,

1¢6)_= (511e_ll_ - 9)c_u,

ICs>_= (511e_ll_ - 9)c_,

1¢9)_= 3e_x -Ile_ll =,

-- (3o_z ,

/

)

I¢_o)_ = (311e_ll_ - _)(3_L -Ile_l12), "1,

I_'_)_ (311e_ll_ 5)(e_-e_),

= _ e_)e_u ,

= -- ec_y)ec_z,

(A.2a)

(A.2b)

(A.2c)

(A.2d)

(A.2e)

(A.2f)

(A.2g)

where c_ E {0, 1, ... , 18). The corresponding nineteen moments {m,_l_ = o, 1, ..., 18} are arranged in the

following order:

Ira) = (p, e, c, jx, q_ , jy, qu, j_ , q_ , 3p_, 37r_, p ..... 7r,,,., Pxy, Py_ ,P_ , m_, my, m_ )T.

10



There are fourteen vectors in the orthogonal basis set {1¢9) } with the same physical significance of the basis

vectors in the D3Q15 model except for I¢s4}. These fourteen vectors correspond to the following moments:

p, c, c, j, q, and Pij. In the D3Q19 basis set {169}} there is no vector corresponding to the mon_ent mxy_ of

equation (3.2f). Instead, there are five vectors which are not in the D3Q15 basis set: three vectors of cubic

order (1¢s6}, 1¢s7}, and 1018}) and two of quartic order (lCso} and 1612}). These five vectors are polynonfials

in 1¢3}, 1¢5), and let). The two vectors of quartic order, I¢10} and ¢s2), have the same symmetry as the

diagonal part of the traceless tensor Pij, while other three vectors of cubic order are parts of a third rank

tensor, with the symmetry of JkP,,_,.

The diagonal collision matrix S is

g = diag(0, ss, s2,0, 84, 0, 84, 0, 84, S9,810, 89, 810, 813, 813, 813, 816, S16,816),

and the transformation matrix M is given at the end of this appendix. Again, the 4th, 6th, and 8th row

vectors of M (corresponding to Jx, Jy, and j_, respectively) uniquely define the ordering (or labelling) of the

velocity set {e_} with respect to subscript _.

With c_ = 1/3 and s9 = ss3, the equilibria of the non-conserved moments are given as functions up to

second-order in p and j as follows:

19j 19_ 2 + .2c (eq) =-llp+-- .j=-llp+--(jx 3v+J_), (A.3a)
Po Po

e(_q) = w_ p + wO j. j, (A.3b)
P0

q(eq) 2 q(eq) __ 2 q_eq) 2= -gjx, gJr, = -gj_, (A.3c)

r/eq ) = __1 [2j_ _ (j_ + j_)] , p(eq)ww= --1 [j_ - j_] , (A.3d)
*_x 30o Po

1 1

,_yr'(eq)= --JxJy,po *'v_'(eq)= _ojyj_ ' p_,) = lj,j_,po (A.3e)

7r}?_) = w,_,(eq) _r(eq) ..... (eq) (A.3f)l_xx , ww _ _x2gl_ww ,

where w_ and w_j are again free parameters and wx_ is an additional free parameter in the D3Q19 model.

The bulk viscosity ¢ of the D3Q19 model is equal to that of the DaQ15 model given in equation (a.6b)

and its kinematic viscosity u is

1(1 2) 1(1 a _).=g - =g (A.4)

To recover the corresponding LBGK model, one must set w_ = 3, wej = -11/2, and wx_ = -1/2.

However, to attain an optimized stability of the model, we obtained the following parameter values through

linear analysis (Lallemand & Luo 2000): tc,_ = 0, w_j = -475/63, wx, = 0, ss = 1.19, s2 = Sl0 = 1.4,

s4 = 1.2, and sis = 1.98. With the above parameter values, we can use a maximum speed of 0.19 (Mach

number M _ 0.33)and a viscosity u > 2.54.10 -3 in simulations. The linear analysis to obtain these 'optimal'

parameter values is a local analysis of a system with a uniform velocity of wave-vector k. The local analysis

does not consider boundary conditions and therefore the system may be less stable in actual simulations.

11



The transformation matrix M is given by

M z

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

--30 --11 --11 --11 --11 --11 --11 8 8 8 8 8 8 8 8 8 8 8 8

12 --4 --4 --4 --4 --4 --4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 --i 0 0

0 --4 4 0 0

0 0 0 1 --I

0 0 0 --4 4

0 0 0 0 0

0 0

0 2

0 0 1 --i 1 --i 1 --i 1 --I 0 0 0 0

0 0 1 --i 1 --i 1 --i 1 --I 0 0 0 0

0 0 1 1 --I --i 0 0 0 0 I --I 1 --I

0 0 1 1 --I --i 0 0 0 0 I --1 1 --I

1 --I 0 0 0 0 1 1 --i --1 I 1 --i --I

0 0 0 --4 4 0 0 0 0 1 1 --1 --1 1 1 --1 --1

2 --1 --1 --1 --1 1 1 1 1 1 1 1 1 --2 --2 --2 --2

0 --4 --4

0 0 0

0 0 0 --2 --2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 2 2 2 1 1 1 1 1 1 1 1 --2 --2 --2 --2

1 1 --1 --1 1 1 1 1 --1 --1 --1 --1 0 0 0 0

2 2 1 1 1 1 --1 --1 --1 --1 0 0 0 0

0 0 1 --1 --1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 --1 --1 1

0 0 0 0 0 0 I --i --i 1 0 0 0 0

0 0 1 --i 1 --i --1 1 --i 1 0 0 0 0

0 0 --i --i 1 1 0 0 0 0 I --1 1 --I

0 0 0 0 0 0 1 1 --i --1 --I --1 1 I

(A.5)
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